Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber
نویسندگان
چکیده
We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped fiber based master oscillator power amplifier. The effect of repetition frequency of pump source and length of germania-doped fiber has also been investigated. Further, germania doped fiber has been pumped by conventional supercontinuum source based on silica photonic crystal fiber supercontinuum source. At low power, a considerable broadening of 200-300 nm was observed. Further broadening of spectrum was limited due to limited power of pump source. Our investigations reveal the unexploited potential of germania doped fiber for mid-infrared supercontinuum generation. These measurements ensure the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source based on silica and germania fiber ever demonstrated to the date. © 2016 Optical Society of America OCIS codes: (320.6629) Supercontinuum generation; (060.4370) Nonlinear optics, fibers; (140.3510) Lasers, fiber; (140.3070) Infrared and far-infrared lasers; (060.2280) Fiber design and fabrication. References and links 1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). 2. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). 3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technol. Lett. 12(7), 807–809 (2000). 4. R. D. Maurer and P. C. Schultz, “Germania containing optical waveguide,” U. S. Patent 3884550 (1975). 5. T. Okuno, M. Onishi, T. Kashiwada, S. Ishikawa, and M. Nishimura, “Silica-based functional fibers with enhanced nonlinearity and their applications,” IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999). 6. J. W. Nicholson, A. K. Abeeluck, C. Headly, M. F. Yan, and C. G. Jørgensen, “Pulsed and continuous-wave supercontinuum generation in highly nonlinear, dispersion-shifted fibers,” Appl. Phys. B 77, 211–218 (2003). 7. J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12(13), 3025–3034 (2004). 8. P. S. Westbrook, J. W. Nicholson, K. Feder, and A. D. Yablon, “UV processing of highly nonlinear fibers for enhanced supercontinuum generation,” in Optical Fiber Communication Conference, (Optical Society of America, 2004), paper PDP27. 9. C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13(3), 789–797 (2007). Vol. 24, No. 23 | 14 Nov 2016 | OPTICS EXPRESS 26667 #276473 http://dx.doi.org/10.1364/OE.24.026667 Journal © 2016 Received 23 Sep 2016; revised 31 Oct 2016; accepted 7 Nov 2016; published 9 Nov 2016 10. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glasscladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004). 11. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500– 3508 (2005). 12. A. N. Gur’yanov, M. Yu. Salganskii, V. F. Khopin, M. M. Bubnov, and M. E. Likhachev, “GeO2-rich low-loss single-mode optical fibers,” Inorg. Mater. 44(3), 278–284 (2008). 13. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32(13), 1848–1850 (2007). 14. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur’yanov, V. F. Khopin, and M. V. Yashkov, “Raman fiber lasers emitting at a wavelength above 2 μm,” Quantum Electron. 34(8), 695–697 (2004). 15. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 μm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012). 16. E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012). 17. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tmdoped MOPFA,” Opt. Express 21(20), 23261–23271 (2013). 18. V. V. Dvoyrin and T. Sorokina, “All-fiber optical supercontinuum sources in 1.7-3.2 μm range,” Proc. SPIE 8961, 89611C (2014). 19. L. Yang, B. Zhang, K. Yin, J. Yao, G. Liu, and J. Hou, “0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser,” Opt. Express 24(12), 12600–12606 (2016). 20. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). 21. G. G. Devyatykh, E. M. Dianov, N. S. Karpychev, S. M. Mazavin, V. M. Mashinskiĭ, V. B. Neustruev, A. V. Nikolaĭchik, A. M. Prokhorov, A. I. Ritus, N. I. Sokolov, and A. S. Yushin, “Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fiber waveguides,” Sov. J. Quantum Electron. 10(7), 900–902 (1980). 22. R. Sidharthan, S. Yoo, D. Ho, L. Zhang, W. Qi, M. S. Yue, L. Zhu, X. Dong, and S. C. Tjin, “Stress-loss correlation and dispersion control in highly GeO2-doped Fibers,” IEEE Photonics Technol. Lett. 28(14), 1521– 1524 (2016). 23. I. Kubat, C. S. Agger, P. M. Moselund, and O. Bang, “Mid-infrared supercontinuum generation to 4.5 μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550 nm,” J. Opt. Soc. Am. B 30(10), 2743–2757 (2013). 24. V. G. Plotnichenko, V. O. Sokolov, V. M. Mashinsky, V. A. Sidorov, A. N. Guryanov, V. F. Khopin, and E. M. Dianov, “Hydroxyl groups in germania glass,” J. Non-Cryst. Solids 296(1-2), 88–92 (2001). 25. C. Agger, S. T. Sørensen, C. L. Thomsen, S. R. Keiding, and O. Bang, “Nonlinear soliton matching between optical fibers,” Opt. Lett. 36(13), 2596–2598 (2011). 26. K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39(12-13), 1057–1069 (2007). 27. J. Cascante-Vindas, S. Torres-Peiro, A. Diez, and M. V. Andres, “Supercontinuum generation in highly Gedoped core Y-shaped microstructured optical fiber,” Appl. Phys. B 98(2-3), 371–376 (2010). 28. G. Mélin, D. Labat, L. Galkovsky, A. Fleureau, S. Lempereur, A. Mussot, and A. Kudlinski, “Highly-nonlinear photonic crystal fibre with high figure of merit around 1 μm,” Electron. Lett. 48(4), 232–234 (2012). 29. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009).
منابع مشابه
Ultra-Broadband Fiber-Based Optical Supercontinuum Source
Entitled: " Ultra-Broadband Fiber-Based Optical Supercontinuum Source " and submitted in partial fulfillment of the requirements for the degree of Master of Applied Science Complies with the regulations of this University and meets the accepted standards with respect to originality and quality. The supercontinuum (SC) generation has been studied intensively because of its numerous applications,...
متن کاملNonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation.
We report about a new type of nonlinear photonic crystal fibers allowing broadband four-wave mixing and supercontinuum generation. The microstructured optical fiber has a structured core consisting of a rod of highly nonlinear glass material inserted in a silica tube. This particular structure enables four wave mixing processes with very large frequency detuning (>135 THz), which permitted the ...
متن کاملHigh-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier.
Broadband mid-infrared supercontinuum pulses were generated directly from a short piece of active fiber in a single-mode Tm-doped fiber amplifier. The broadband mid-infrared pulses have an extremely high spectral flatness with ~600 nm FWHM bandwidth (from 1.9 μm to 2.5 μm), >15 kW peak power, and >20 GW/cm(2) laser peak intensity. This new approach exhibits a significantly different physical me...
متن کاملUltra wideband CW pumped optical supercontinuum source
Ultra wideband CW pumped optical supercontinuum source Yue Song Keyword: supercontinuum, ultra wide optical source, nonlinear optical effects, continuous wave pump, ring cavity laser; Optical supercontinuum (OSC) laser source is a new generation wideband laser which has various commercial applications such as telecommunication, biomedicine, and optical sensing systems. However the high costs of...
متن کاملBroadly tunable source around 2050 nm based on wideband parametric conversion and thulium-holmium amplification cascade.
We report the design of a short-wave infrared continuous-wave light source featuring a 20 mW average output power, and with a wavelength that can be freely selected in the 2000-2100 nm range amid a low power ripple. The operating principle relies on the simultaneous broadband parametric conversion of two seeds in a highly nonlinear silica fiber pumped in the L-band followed by amplification and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017